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A composite model for superplasticity 

B. BAUDELET, J IANSHE LIAN* 
Genie Physique et Mecanique des Matoriaux, Unite Associee au CNRS ENSPG, Institut 
National Poll/technique de Grenoble BP46, 38402, Saint Martin d'Hores, France 

A composite model for superplasticity, based on the joint influences of both the behaviour of 
a composite boundary and creep, is proposed. In this model, superplasticity is considered as 
a combination of two mechanisms: grain-boundary sliding and dislocation creep, which 
occur either together or sequentially. Applied to experimental data, it can describe the 
logarithmic stress versus strain rate curves observed for superplastic materials showing 
regions I, I1 and II1. 

1. Introduction 
In the last two or three decades, a number of mecha- 
nism models have been proposed to clarify the domi- 
nant microstructural features of superplasticity [1-9]. 
Both theoretical models and microstructural observa- 
tions indicate that the most important feature of 
superplasticity is the role played by grain-boundary 
sliding (GBS). However, dislocation motion or diffu- 
sion in grains or near-grain-boundary regions must 
always be invoked to maintain a continuous super- 
plastic deformation. Consequently, most models con- 
sider superplastic deformation as a GBS process asso- 
ciated with and rate controlled by the accommodation 
processes, i.e. the diffusion-accommodation model of 
Ashby and Verrall [3], and the dislocation pile-up 
accommodation models of Ball and Hutchinson [4] 
(Fig. la) and Mukherjee [5]. 

The typical superplastic mechanical behaviour is 
represented by the log (y versus log ~ curve which can 
be divided into three regions I, II and III. Superplas- 
ticity occurs in region II with a high strain-rate sensi- 
tivity, m(m >>. 0.5) while in regions I and III, the 
strain-rate sensitivity values are about 0.2-0.3. To 
account for this typical behaviour, the phenom- 
enological transition model was proposed by Hart 
[10]. The high strain-rate sensitivity behaviour can be 
simulated by applying the numerical finite element 
method to the creep constitutive law of polycrystalline 
materials affected by the Newtonian grain-boundary 
sliding [11, 12]. The behaviour can be represented by 
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where ~ and ~ are, respectively, the applied strain rate 
and stress, CYa(~) is the constitutive law for dislocation 

creep, n is a stress-sensitivity exponent which is about 
4 5 for dislocation creep, ~2 and A2( = (1/~2)1/"), are 
constants, and f is the transition parameter which is 
greater than one when grain-boundary sliding takes 
place. 

This expression, obtained by numerical analysis, 
was also deduced from a composite boundary model 
[13]. In the composite boundary, formed by grain 
boundaries and their band prolongations inside the 
grains (Fig. 1 in [13]), shear bands can develop. In this 
model, f i s  greater than 1 and is a topological function 
because its value increases for composite boundaries 
with a high grain-boundary fraction. This composite 
boundary model is similar to those previously pro- 
posed [4]. This mechanism was experimentally ob- 
served [14-16]. 

The composite boundary model [13] ascribes 
the observed deformation behaviour in a sequence 
of controlling mechanisms. Region I is characterized 
by creep inside the grains which controls the deforma- 
tion of the composite boundary. The transition from 
region I to region II reflects the progressive transfer of 
control to the behaviour of the grain boundary which 
is accompanied by the development of increasingly 
wider shear bands in the grains. The composite 
boundary-controlled deformation in region II is pro- 
gressively replaced by an overall creep in the material 
to reach, finally, region ]II in which the composite 
boundary completely loses its influence. 

2. Analysis 
2.1. The composite model for 

superplasticity 
From the composite boundary model, the average 
applied stress is defined as 

(a + b)c~(~) = a~.(~) + bCZb(~) (2) 

where ~Ya(~) and (~b(~) a r e  the stresses for dislocation 
creep and gain-boundary sliding, respectively. The 
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Figure ] (a) Schematic illustration of dislocation slip acccommoda- 
tion in the grain-boundary sliding model of Ball and Hutchinson. 
(b) Grain boundary sliding described by Raj and Ashby, 

definitions of the surfaces a and b are shown in Fig. 1. 
Equation can be rewritten as 

~(~) = (1 - F ~ ) ~ . ( ~ )  + FgU~U(~) 

= ~ ~ . (~ )  (3) 

where Fg b = b/(a + b) is the fraction of the stress con- 
tribution due to grain-boundary sliding. Introducing 
Equation 1 in Equation 3 gives the expression for f 

1 
f = (4) 

1 - Fgu(1 - o~/~) 
Equation 1 with Equation 4 is the modified expression 
for the Baudelet model [13]. In the above derivation, 
the equal-strain rate, i.e. the Taylor assumption, was 
used. This model is applicable to the case where the 
applied stress is smaller than the flow stress for dislo- 
cation creep (regions I and II); it can describe the 
transition behaviour from region I to region II fairly 
well. However, at the higher strain rates in region III, 
or towards the end of region II, the model always 
overestimates the flow stress. Fortunately, the Ashby 
and Verrall (A-V) model E3] can describe the 
transition behaviour from region II to region III. 
Following the A-V model, we therefore assume that 
the total strain rate can be expressed as 

or  

= (1 + f " ) a 2  o" (5a) 

Equation 5a and b, wherefis expressed by Equation 4, 
are the expressions for the composite model for super- 
plasticity based on both the Baudelet and the A-V 
concepts. 

2.2. G r a i n - b o u n d a r y  s l i d i n g  a n d  
d i s l o c a t i o n  c r e e p  

The Raj and Ashby model E7] describes grain-bound- 
ary sliding and is schematically illustrated in Fig. lb. 
According to the model, the displacement rate, U, for 
a steady-state sliding of a sinusoidal boundary with 
local diffusion accommodation, is expressed as 

l~kTh2 Dv 1 + - -  Zb XDv ) (6) 

where f~ is the atomic volume, 6 the grain boundarY 
width, h and X the amplitude and wavelength of the 
sinusoidal curved grain boundary, respectively, and 
kT has the usual meaning. Dg b = Dgb0/exp(- Qgb/ 
RT) and Dv are the grain-b0undary and volume-diffu- 
sion coefficients, respectively, Qgb, the activation en- 
ergy for grain-boundary diffusion, DgbO , the pre-ex- 
ponential factor, R the gas constant, and Z'b, the shear 
stress for grain-boundary sliding. For small grain 
sizes, ~ D g b / ~ D v  >~ 1, and Equation 6 becomes ap- 
proximately 

(f ,.~ 8~')6Dgb 
kTh2 Zb (7) 

Using 9 ~ 2U/d and D = b 3, where b is the Burgers 
vector, and assuming that h is proportional to d, one 
obtains 

Tb = A t  ~ b g b  ~/ ( 8 a )  

kT (_,)3 
(Yb = A1 (~Dg b \ b / ]  e (8b) 

where A1 and AT are adjustable material-dependent 
constants. This is the expression for grain-boundary 
sliding accommodated by local diffusion based on the 
Raj and Ashby model. One notes that the Coble creep 
is described in a similar way. 

The stress for dislocation creep can be expressed 
through an empirical relationship 

o, = A~ D0exp(---- Q/RT) ~ (9a) 

This can be simplified to 

o,  = Aa(g) 1/" (9b) 

where Do is the pre-exponential factor and (2 the 
activation energy, which may be either for volume 
diffusion or for grain-boundary diffusion. A2 and 
A~ are adjustable material-dependent constants. 

By introducing Equations 8b and 9b into Equation 
4, one finally obtains the expression for the presently 
proposed composite model for superplasticity 

cy = A 2 \ 1 ~ - ~ / /  (10a) 
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where 

,:{1 1} A2~Dgb (~)1 - 1/,, (10b) 

3. Application 
3.1. Zn-22% AI alloy 
Zn-22% A1 is a typical superplastic alloy. The log 
cy versus logg data points [17] of this alloy with 
a grain size d = 2.5 btm are plotted in Fig. 2 for three 
test temperatures: 423, 473 and 503 K. For  the same 
temperatures, the composite model predicts the be- 
haviour shown by the solid lines when the parameters 
in Table I are used. Both A, and A2 are fitting 
parameters; Az was adjusted to fit the data for each 

temperature. Apart from A2 (see Table I1), all the 
parameter values are independent of the test temper- 
ature. A good fit was obtained for the three regions (I, 
II and III) and the values chosen for Az seem to be 
reasonable (see Section 4). 

3.2. WC-Co alloy 
Another example of the influence of temperature on 
the log c~ versus log g curves is shown in Fig. 3 for 
a WC-Co alloy with d = 1.3 btm. Using the same pro- 
cedure as above and the parameters in Table I, one 
obtains not only a good fit between the experimental 
data and the theoretical curves but also reasonable 
values for A2. 
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Figure 2 The tog cr versus Iog~ curves of a Zn-22%At  alloy at 
various temperatures; experimental data points [17] are superposed 
on the fitted curves of the composite model. (a) �9 503 K, (b) (O) 
473 K, (c) 423 K. d = 2.5 gm. 
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Figure 3 The logcr versus log~ curves of a WC-Co aiIoy at 
various temperatures; ( l l ,&, O) experimental data points [18] 
are superposed on ( - - )  the fitted curves of the composite model. 
(a) ( I )  1200~ (b) (A) 1150~ (c) (O)1100~ d = 1.3 gm. 

T A B L E  I Parameters used in the stress versus strain-rate simulation with the composite model 

Alloy r Qgb 8Dgbo b A1 ~ A2 a n Fg b 

(K) (kJmol - I )  (mas -~) (10-9m) 

Zn-22%AI 423-503 60[23] 1.9 x 10-i`*[23] 0.27 1 x 10 -1~ 90-150 4.5 0.79 
(d = 2.5 pro) [17] 

WC-Co  1373-1473 460118] 1 x 10 -13 [23] 0.29 2 • 10 -16 920-1550 5 0.69 
(d = 1.3 lam) [183 

P/MA1 5Mg-Mn 823 60.2[23] 1.9 x 10-14123] 0.286 2.17 x 10 ? 28 5 0.56 
(d = 1 gm) [19] 

Al-alloy 500 '60.2[23] 1.9 x 10-14123] 0.286 3 • 10 -8 40 5 0.56 
(d = 0.5-15 btm) [20] 

aA1 and A2 are expressed in international units. 

T A B L E  II Parameter A2 for Zn-22% AI and WC-Co at various temperatures 

Alloy i T A* A 2 (caI)" A2 (fit) 2 Q Do [23] 
(s-  1) (K) (kJ mol - t) (m 2 s - t) 

Zn-22% A1 1 423 1 x 104 158 150 60[23] 1.9 x 10-s 
(2.5 gm) 1 473 1 x 104 109 110 60[23] 1.9 x 10 - s  

1 503 1 x 104 90 90 60[23] 1.9 x 10 - s  

WC-Co 0.01 1373 692 1570 1550 4601-18] 1 x 10-`* 
(1.3 lam) 0.01 1423 692 1191 1350 460118] 1 x 10-`* 

0.01 1473 692 920 920 460118] 1 x 10-'* 

a A2 (fit) are the values used to fit the experimental log c~ versus log ~ curves and A2 (cal) are the values calculated from Equation 9a at various 
temperatures using a constant A~. A*, A2(fit) and A2(cal.) are expressed in international units. 
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Figure 4 The log o versus log ~ data of two P/M AI-5 M ~ M n  
alloys with the fitted curve for the composite model. T = 823 K; (40 
1.5 Mn, ( I )  2.2 Mn. 
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Figure 5 The optimum strain rate as a function of the reciprocal of 
grain size of P/M alloys. Optimum strain rate corresponds either to 
experimental maximum elongation or to the calculated maximum 
strain-rate sensitivity. ( I )  A1-5Mg-Mn, ([~) AI-5Mg-Zr, (I~) 
A1-4.3 Cu-Zr, (~) 7475 A1 + Zr. 

3.3. P/M AI alloys [16] and AI alloys [17] 
Typical log cy versus log~ data for two P/M A1- 
5Mg-Mn alloys [19] and the corresponding theoret- 
ical curve calculated with the parameters in Table 
I are plotted in Fig. 4. From the fitted behaviour, the 
strain rate corresponding to the maximum value of 
strain-rate sensitivity, m, can be calculated and this 
optimum value for the strain rate is compared to the 
experimental value for maximum elongation (Fig. 5) 
as a function of the reciprocal grain size. The theoret- 
ical curve describes the trend of experimental data 
fairly well and one obtains a grain size exponent of 3. 

Another group of alloys can be considered. From 
the data for aluminium alloys with various grain sizes 
ranging from 0.5-15 pm [20], the same fitting proced- 
ure was done using the parameters in Table I. From 
the fitted curves, one can obtain values of the strain- 
rate sensitivity, m, which can be related to elongation 
through the simple relationship [21] 

Elongation (%) = - 1 x 100% 

with A--  0.01 (11) 

The experimental (Fig. 6a) and calculated (Fig. 6b) 
variations of elongation as a function of strain rate can 
now be compared. In both, the presence of high 
strain-rate superplasticity is clearly seen. The cal- 
culated elongation peaks at optimum strain rates are 
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Figure 5 (a) Experimental cmves of elongation to failure as a func- 
tion of strain rate for various aluminium alloys [20] having diferent 
grain sizes. (b) Elongation to failure as a function of strain rate for 
aluminium alloys calculated with the present composite model for 
different grain sizes, at 500 ~ 

higher than those experimentally observed and this 
may be due to the occurrence of cavitation [22]. 
Although good fits have not been obtained, the model 
can show the general tendency of the influence of grain 
size on the behaviour of elongation versus strain rate 
and, in particular, the high strain-rate plasticity for 
grain sizes less than 1 gm. To obtain good fits, one 
must introduce material-dependent A~, A2 and 
Fgb parameters, i.e. different values for different alumi- 
nium alloys. 

4. Discussion 
In the above calculation, the parameter Fgb, which 
approximately reflects that part of optimum super- 
plastic strain rate due to grain-boundary sliding and 
which was chosen between 0.56 and 0.79, was found to 
have a dominant influence on both the strain-rate 
range for region II and the maximum value of the 
strain-rate sensitivity. Fig. 7 shows the maximum 
m value as a function of Fgu for P/M aluminium alloys 
calculated with the composite model. This m value 
increases with Fgb, reaching m = 1 for pure GBS. For 
a typical m value of 0.5, Fgb is equal to 0.6; this agrees 
with the reported ( ~ 60%) contribution of GBS in the 
total strain [2, 24]. 

The parameter A2 may be found either by simply 
fitting Equation 9b to the experimental data for each 
test temperature, or by obtaining A* from a fit of 
Equation 9a at one test temperature and calculating 
the value of A2 for all other temperatures. For both 
Zn-22% A1 and WC-Co alloys, these two procedures 
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Figure 7 Strain-rate sensitivity, m, as a function of Fgb calculated 
with the composite model using parameter values for P/M alumi- 
nium alloys. 

lead to similar values for A2 if the activation energy is 
taken to be that for grain-boundary diffusion, i.e. the 
same values as those for region II (see Table II). It 
therefore seems that in these two small-grained mater- 
ials, the dislocation creep mechanism may be control- 
led by grain-boundary diffusion, or by dislocation 
pipe diffusion whose activation energy is of similar 
magnitude. This observation does not agree with the 
usual assumption that dislocation creep in region III 
is dominated by volume diffusion (see the review pa- 
per by Kashyap and Mukherjee [-25]). 

Experimental data [1,2] and theoretical models 
[3-9, 25], usually consider the value of the grain-size 
exponent, p, to be around 2-3. In the present model, 
this value, found to be equal to 3, falls within this 
range. However, it must be noted that the value that 
p takes depends on how it is defined. In Figs 5 and 6, 
where it is defined for the optimum strain rate, a value 
of 3 is obtained. However, if the exponent is measured 
for a constant stress in region II, it varies in the range 
of about 2.2-2.6, depending on the stress levels and on 
the parameter values assumed. 

Finally, for the behaviour described in the present 
model, strain rates must neither be too low nor too 
high. At too low strain rates, GBS stress levels are 
much lower than the intragranular creep flow stress 
and the deformation behaviour is comparable to that 
of glass marbles immersed in a connected fluid; the 
deformation is then controlled by the behaviour of the 
fluid (m high). At too high strain rates, GBS stress 
levels are much higher than the intragranular creep 
flow stress; the deformation behaviour can then be 
considered similar to that of highly deformable 
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Figure 8 Schematic representation of the stress, cy, as a function of 
strain rate, ~, showing the regions of applicability of the composite 
model (regions, I, II and III) as well as the regions of too low or too 
high strain rates: the arrows indicate the displacement direction of the 
latter two regions as the fraction of the connected phase increases. 

marbles surrounded by a less deformable connected 
phase and this behaviour will be controlled by the latter 
(m high) (Fig. 8). The extent of the strain-rate range in 
which the model is applicable should depend on the 
thickness of the connected phase because one must 
expect the "extreme" strain-rate ranges (too low or too 
high) to move towards each other as the connected 
phase becomes thicker. These qualitative observations 
are in agreement with the theoretical approach based 
on the theory of di-phased material homogenization [26]. 

5. Conclusion 
1. A composite model for superplastic deformation 

is proposed based on the Baudelet and Ashby-Verrall 
models. 

2. The composite model takes into account grain- 
boundary sliding and dislocation creep and can de- 
scribe the stress versus strain-rate behaviour for 
a number of superplastic materials. The influence of 
temperature and grain size on the log ~ versus log 
curve can also be predicted. 
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